PRIVILEGED IDENTITY

I BeyondTrust REORGANIZE AND REBUILD INDEXES IN DATABASE

Reorganize and Rebuild Indexes in the Database

This topic describes how to reorganize or rebuild a fragmented index in SQL Server 2017 by using SQL Server Management Studio or
Transact-SQL. The SQL Server Database Engine automatically maintains indexes whenever insert, update, or delete operations are
made to the underlying data. Over time these modifications can cause the information in the index to become scattered in the database
(fragmented). Fragmentation exists when indexes have pages in which the logical ordering, based on the key value, does not match the
physical ordering inside the data file. Heavily fragmented indexes can degrade query performance and cause your application to respond
slowly.

You can remedy index fragmentation by reorganizing or rebuilding an index. For partitioned indexes built on a partition scheme, you can
use either of these methods on a complete index or a single partition of an index. Rebuilding an index drops and re-creates the index. This
removes fragmentation, reclaims disk space by compacting the pages based on the specified or existing fill factor setting, and reorders the
index rows in contiguous pages. When ALL is specified, all indexes on the table are dropped and rebuilt in a single transaction.
Reorganizing an index uses minimal system resources. It defragments the leaf level of clustered and non-clustered indexes on tables and
views by physically reordering the leaf-level pages to match the logical, left to right, order of the leaf nodes. Reorganizing also compacts
the index pages. Compaction is based on the existing fill factor value.

Before You Begin

Detecting Fragmentation

The first step in deciding which defragmentation method to use is to analyze the index to determine the degree of fragmentation. By using
the system function sys.dm_db_index physical stats, you can detect fragmentation in a specific index, all indexes on a table or indexed
view, all indexes in a database, or all indexes in all databases. For partitioned indexes, sys.dm_db_index_physical_stats also provides
fragmentation information for each partition.

The result set returned by the sys.dm_db_index_physical_stats function includes the following columns.

Column | Description

avg_fragmentation_in_percent The percent of logical fragmentation (out-of-order pages in the index)
fragment_count The number of fragments (physically consecutive leaf pages) in the index
avg_fragment_size_in_pages Average number of pages in one fragment in an index

After the degree of fragmentation is known, use the following table to determine the best method to correct the fragmentation.

avg_fragmentation_in_percent Corrective statement

value
>5% and <=30% ALTER INDEX REORGANIZE
> 30% ALTER INDEX REBUILD WITH (ONLINE = ON)*

* Rebuilding an index can be executed online or offline. Reorganizing an index is always executed online. To achieve availability similar to
the reorganize option, you should rebuild indexes online.

These values provide a rough guideline for determining the point at which you should switch between ALTER INDEX REORGANIZE and
ALTER INDEX REBUILD. However, the actual values may vary from case to case. It is important that you experiment to determine the
best threshold for your environment. Very low levels of fragmentation (less than 5 percent) should not be addressed by either of these
commands because the benefit from removing such a small amount of fragmentation is almost always vastly outweighed by the cost of
reorganizing or rebuilding the index.

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 1

©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.


https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-physical-stats-transact-sql?view=sql-server-2017

PRIVILEGED IDENTITY

I BeyondTI’USt REORGANIZE AND REBUILD INDEXES IN DATABASE

x Note: In general, fragmentation on small indexes is often not controllable. The pages of small indexes are sometimes stored
on mixed extents. Mixed extents are shared by up to eight objects, so the fragmentation in a small index might not be reduced
after reorganizing or rebuilding the index.

Limitations and Restrictions

« Indexes with more than 128 extents are rebuilt in two separate phases: logical and physical. In the logical phase, the existing
allocation units used by the index are marked for deallocation, the data rows are copied and sorted, then moved to new allocation
units created to store the rebuilt index. In the physical phase, the allocation units previously marked for deallocation are physically
dropped in short transactions that happen in the background, and do not require many locks.

« Index options cannot be specified when reorganizing an index.

« The ALTER INDEX REORGANIZE statement requires the data file containing the index to have space available, because the
operation can only allocate temporary work pages on the same file, not another file within the filegroup. So although the filegroup
might have free pages available, the user can still encounter error 1105: "Could not allocate space for object <index name>.<table
name> in database <database name> because the 'PRIMARY" filegroup is full."

« Creating and rebuilding nonaligned indexes on a table with more than 1,000 partitions is possible, but is not supported. Doing so
may cause degraded performance or excessive memory consumption during these operations.

x Note: Starting with SQL Server 2012, statistics are not created by scanning all the rows in the table when a partitioned index is
created or rebuilt. Instead, the query optimizer uses the default sampling algorithm to generate statistics. To obtain statistics
on partitioned indexes by scanning all the rows in the table, use CREATE STATISTICS or UPDATE STATISTICS with the
FULLSCAN clause.

Permissions

Requires ALTER permission on the table or view. User must be a member of the sysadmin fixed server role or the db_ddladmin and db_
owner fixed database roles.

Check the fragmentation of an index

SQL Server Management Studio

In Object Explorer, Expand the database that contains the table on which you want to check an index’s fragmentation.
Expand the Tables folder.
Expand the table on which you want to check an index’s fragmentation.

1.

2

3

4. Expand the Indexes folder.

5. Right-click the index of which you want to check the fragmentation and select Properties.
6

Under Select a page, select Fragmentation.
The following information is available on the Fragmentation page:

Page fullness

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 2
©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.



PRIVILEGED IDENTITY

I BeyondTI‘USt REORGANIZE AND REBUILD INDEXES IN DATABASE

Indicates average fullness of the index pages, as a percentage. 100% means the index pages are completely full. 50% means
that, on average, each index page is half full.

Total fragmentation

The logical fragmentation percentage. This indicates the number of pages in an index that are not stored in order.
Average row size

The average size of a leaf level row.

Depth

The number of levels in the index, including the leaf level.

Forwarded records

The number of records in a heap that have forward pointers to another data location. (This state occurs during an update, when
there is not enough room to store the new row in the original location.)

Ghost rows

The number of rows that are marked as deleted but not yet removed. These rows will be removed by a clean-up thread, when the
server is not busy. This value does not include rows that are being retained due to an outstanding snapshot isolation transaction.

Index type

The type of index. Possible values are Clustered index, Nonclustered index, and Primary XML. Tables can also be stored as a
heap (without indexes), but then this Index Properties page cannot be opened.

Leaf-level rows

The number of leaf level rows.
Maximum row size

The maximum leaf-level row size.
Minimum row size

The minimum leaf-level row size.
Pages

The total number of data pages.
Partition ID

The partition ID of the b-tree containing the index.
Version ghost rows

The number of ghost records that are being retained due to an outstanding snapshot isolation transaction.

Transact-SQL

1. In Object Explorer, connect to an instance of Database Engine.
2. Onthe Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 3
©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.



PRIVILEGED IDENTITY

I BQYO"CITI‘USt REORGANIZE AND REBUILD INDEXES IN DATABASE

USE AdventureWorks2012;

GO

-- Find the average fragmentation percentage of all indexes

-- in the HumanResources.Employee table.

SELECT a.index id, name, avg fragmentation in percent

FROM sys.dm db index physical stats (DB ID(N'AdventureWorks2012'),
OBJECT ID(N'HumanResources.Employee'), NULL, NULL, NULL) AS a
JOIN sys.indexes AS b

ON a.object id = b.object id AND a.index id = b.index id;

GO

The statement above might return a result set similar to the following:

index id name avg fragmentation in percent
1 PK Employee BusinessEntityID 0

2 IX Employee OrganizationalNode 0

3 IX Employee OrganizationalLevel OrganizationalNode 0

5 AK Employee LoginID 66.6666666666667

6 AK Employee NationalIDNumber 50

7 AK Employee rowguid 0

6 row(s) affected)

For more information, see sys.dm_db_index_physical stats (Transact-SQL).

Reorganize or rebuild an index

SQL Server Management Studio

1. In Object Explorer, Expand the database that contains the table on which you want to reorganize an index.
2. Expand the Tables folder.
3. Expand the table on which you want to reorganize an index.
4. Expand the Indexes folder.
5. Right-click the index you want to reorganize and select Reorganize.
6. Inthe Reorganize Indexes dialog box, verify that the correct index is in the Indexes to be reorganized grid and click OK.
7. Select the Compact large object column data check box to specify that all pages that contain large object (LOB) data are also
compacted.
8. Click OK.
Transact-SQL

1. In Object Explorer, connect to an instance of Database Engine.
2. Onthe Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 4

©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.


https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-physical-stats-transact-sql?view=sql-server-2017

PRIVILEGED IDENTITY

I BQYO"CITI‘USt REORGANIZE AND REBUILD INDEXES IN DATABASE

USE AdventureWorks2012;

GO

-- Reorganize the IX Employee OrganizationalLevel OrganizationalNode
-- index on the HumanResources.Employee table.

ALTER INDEX IX Employee OrganizationallLevel OrganizationalNode
ON HumanResources.Employee

REORGANIZE ;

GO

Reorganize all indexes in a table

SQL Server Management Studio

In Object Explorer, Expand the database that contains the table on which you want to reorganize an index.
Expand the Tables folder.

Expand the table on which you want to reorganize the indexes.

Right-click the Indexes folder and select Reorganize All.

o w N~

In the Reorganize Indexes dialog box, verify that the correct indexes are in the Indexes to be reorganized. To remove an index
from the Indexes to be reorganized grid, select the index and then press the Delete key.

6. Selectthe Compact large object column data check box to specify that all pages that contain large object (LOB) data are also

compacted.
7. Click OK.
Transact SQL

1. In Object Explorer, connect to an instance of Database Engine.
2. Onthe Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

USE AdventureWorks2012;

GO

-- Reorganize all indexes on the HumanResources.Employee table.
ALTER INDEX ALL ON HumanResources.Employee

REORGANIZE ;

GO

Rebuild an index

SQL Server Management Studio

1. In Object Explorer, Expand the database that contains the table on which you want to reorganize an index.
2. Expand the Tables folder.

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 5

©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.



PRIVILEGED IDENTITY

I BeyondTI‘USt REORGANIZE AND REBUILD INDEXES IN DATABASE

Expand the table on which you want to reorganize an index.

Expand the Indexes folder.

Right-click the index you want to reorganize and select Rebuild.

In the Rebuild Indexes dialog box, verify that the correct index is in the Indexes to be rebuilt grid and click OK.

No a &~

Select the Compact large object column data check box to specify that all pages that contain large object (LOB) data are also
compacted.

8. Click OK.

Rebuild a defragmented index

Transact-SQL

1. In Object Explorer, connect to an instance of Database Engine.
On the Standard bar, click New Query.

Copy and paste the following example into the query window and click Execute. The example rebuilds a single index on the
Employee table.

USE AdventureWorks2012;

GO

ALTER INDEX PK Employee BusinessEntityID ON HumanResources.Employee
REBUILD;

GO

Rebuild all indexes in a table

Transact-SQL

In Object Explorer, connect to an instance of Database Engine.
On the Standard bar, click New Query.

Copy and paste the following example into the query. The example specifies the keyword ALL. This rebuilds all indexes
associated with the table. Three options are specified.

USE AdventureWorks2012;

GO

ALTER INDEX ALL ON Production.Product

REBUILD WITH (FILLFACTOR = 80, SORT IN TEMPDB = ON,
STATISTICS NORECOMPUTE = ON) ;

GO

For more information, see ALTER INDEX (Transact-SQL).

SALES: www.beyondtrust.com/contact SUPPORT: www.beyondtrust.com/support DOCUMENTATION: www.beyondtrust.com/docs 6
©2003-2022 BeyondTrust Corporation. All Rights Reserved. Other trademarks identified on this page are owned by their respective owners. BeyondTrust is not a chartered bank or trust company, or TC: 8/4/2022
depository institution. It is not authorized to accept deposits or trust accounts and is not licensed or regulated by any state or federal banking authority.


https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql

	Reorganize and Rebuild Indexes in the Database
	Before You Begin
	Detecting Fragmentation
	Limitations and Restrictions
	Permissions

	Check the fragmentation of an index
	SQL Server Management Studio
	Transact-SQL

	Reorganize or rebuild an index
	SQL Server Management Studio
	Transact-SQL

	Reorganize all indexes in a table
	SQL Server Management Studio
	Transact SQL

	Rebuild an index
	SQL Server Management Studio

	Rebuild a defragmented index
	Transact-SQL

	Rebuild all indexes in a table
	Transact-SQL



